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Abstract

The onset of double-di�usive convection in a horizontal porous cavity is studied numerically using linear stability
analysis. In the formulation of the problem, use is made of the Darcy model with the Boussinesq approximation.

Mixed boundary conditions for heat and solute are speci®ed on the horizontal walls of the enclosure while the two
vertical ones are impermeable and adiabatic. The Galerkin and the ®nite element methods are used to solve the
perturbation equations. The onset of convection is found to be dependent of the aspect ratio of the cavity, A,

normalized porosity, e, Lewis number, Le, solutal to thermal buoyancy ratio, N, and the thermal and solutal
boundary conditions. For a con®ned enclosure, it is shown that there exists a supercritical Rayleigh number, R sup

TC,
for the onset of the supercritical convection and an overstable Rayleigh number, R over

TC , at which overstability may

arise. Furthermore, the overstable regime is shown to exist up to a critical Rayleigh number, R osc
TC, at which the

transition from the oscillatory to direct mode convection occurs. However, for an in®nite layer (A41) the results
indicate the absence of an overstable regime. Numerical results for ®nite amplitude convection, obtained by solving
numerically the full governing equations, demonstrate that subcritical convection is possible. # 2000 Elsevier

Science Ltd. All rights reserved.

1. Introduction

Buoyancy-driven instability in a horizontal porous

layer saturated by a monocomponent ¯uid, heated

from below in the presence of a gravitational ®eld, has

received considerable attention owing to relevance in

many natural and industrial problems. Starting with

the pioneering works of Horton and Rogers [1] and

Lapwood [2], several studies have been devoted to the

onset of convection in horizontal porous layers. An

excellent review of the available investigations in this

domain has been reported by Nield and Bejan [3].
A related phenomenon that has received relatively

less attention is the stability of a porous layer satu-

rated by binary-¯uids. The resulting ¯ows, induced by
both temperature and concentration ®elds, are
expected to be much more complicated than the purely
thermal convection ¯ow, especially when the two buoy-

ancies are in opposite directions. The growing research
on double-di�using natural convection in porous
media is mainly motivated by its importance in diverse

engineering problems such as the migration of moist-
ure in ®brous insulation, the contaminant transport in
saturated soil, the underground disposal of nuclear

wastes and drying processes.
The onset of double di�usive convection in por-
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ous layers was ®rst investigated by Nield [4], on the

basis of the linear stability theory. The criteria for
the existence of steady and oscillatory thermohaline

convection was derived by this author. An extension

of the above investigation was made by Taunton
and Lightfoot [5] to more completely characterize

the onset of convection in an in®nite horizontal

porous layer strati®ed by temperature and concen-
tration. A linear stability analysis was carried out

by Poulikakos [6] to study double di�usive convec-

tion in a horizontal sparsely packed porous layer.
The ¯ow in the porous matrix was investigated by

using the Brinkman-extended Darcy model, which

accounts for friction due to macroscopic shear.

Results for a pure viscous ¯uid and a Darcy (den-
sely packed) porous medium were obtained from his

analysis as limiting cases. The e�ect of anisotropic

thermo-convective currents in the presence of Soret
and Dufour e�ects on the critical Rayleigh numbers

for both marginal and overstable motions has been

studied by Malashetty [7]. It was found that,
depending on the thermal and solutal boundary

conditions, the thermo-convective currents have a

stabilizing e�ect as well as a destabilizing e�ect

with respect to the case in which these currents are
absent.

A few studies concerning ®nite amplitude convection

in a two-component ¯uid saturated porous layer are

also available in the literature. The nonlinear stability
of thermohaline convection in a horizontal porous

layer heated from below has been considered by

Rudraiah et al. [8]. The critical Rayleigh number, for
the onset of ®nite amplitude convection, was derived

using a truncated representation of Fourier series. The

e�ects of Prandtl, Lewis and Darcy numbers on con-
vection are discussed by these authors. Brand and

Steinberg [9] investigated the nonlinear e�ects in the

convective instability of a binary mixture in a porous
medium near threshold. A ®nite amplitude solution

was derived for both the stationary and the oscillatory

instabilities and an oscillatory behavior in time for the
Nusselt and Sherwood numbers was predicted. Trevi-

san and Bejan [10] completed a theoretical and numeri-

cal study of the mass transfer e�ected by high

Rayleigh BeÂ nard convection in a two-dimensional satu-
rated porous layer heated from below. The theoretical

Nomenclature

A aspect ratio, W '/H '
D solutal di�usivity
g acceleration due to gravity

H ' height of the enclosure
k thermal conductivity of the saturated porous

medium

K permeability of the porous medium
Le Lewis number, a/D
Ney number of elements in y-direction

N buoyancy ratio, bSDS '/bTDT '
Nu overall Nusselt number, Eq. (35)
q ' uniform heat ¯ux (per unit area)
RS solutal Darcy±Rayleigh number, gbSKDS 'H '/

Dn
RT thermalDarcy±Rayleighnumber,gbTKDT 'H '/

an
S dimensionless concentration, (S 'ÿS 'r)/DS '
S 'L higher concentration of the lower wall
S 'U lower concentration of the upper wall

S 'r reference concentration, (S 'L+S 'U)/2
Sh overall Sherwood number, Eq. (35)
t dimensionless time, t 'a/sH '2

T dimensionless temperature, (T 'ÿT 'r)/DT '
T 'r reference temperature at x '=y '=0
u, n dimensionless velocities in x- and y-direc-

tions, (u ', n ')H '/a
W ' width of the enclosure

x, y dimensionless coordinate system, (x ', y ')/H '

Greek symbols
a thermal di�usivity, k/(rC )f
bS solutal expansion coe�cient
bT thermal expansion coe�cient
DS ' characteristic concentration, (S 'LÿS 'U)
DT ' characteristic temperature, q 'H '/k
e normalized porosity of the porous medium,

e=F/s
n kinematic viscosity of ¯uid

r density of ¯uid
(rC )f heat capacity of ¯uid
(rC )p heat capacity of saturated porous medium

s heat capacity ratio, (rC )p/(rC )f
F porosity of the porous medium
C dimensionless stream function, C '/a

Subscripts

C pure di�usive state
max maximum value
r reference state

Superscript
' dimensionless variable
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conclusions of a scale analysis proposed by these
authors were found to be in good agreement with their

numerical results. An experimental study of double-
di�usive convection in a porous medium has been
carried out by Murray and Chen [11]. A good agree-

ment for the critical thermal Rayleigh number was
obtained between the experiments and linear stability
theory. Thermohaline convective ¯ows through porous

media heated from below in a square cavity have been
studied by Rosenberg and Spera [12] for a variety of
boundary and initial conditions on the salinity ®eld. It

was demonstrated numerically that the ¯ow dynamic
depends strongly on the buoyancy ratio at ®xed Ray-
leigh and Lewis numbers. Nonlinear double-di�usive
®ngering convection in a horizontal porous medium, in

which horizontal periodic boundary conditions are pre-
scribed, has been considered by Chen and Chen [13].
The stability boundaries dividing the regions of di�er-

ent modes of ¯uid motion have been identi®ed by
these authors in terms of the thermal and solutal Ray-
leigh numbers. Finite amplitude natural convection

within an inclined porous layer, heated and salted
from sides by uniform ¯uxes of heat and mass, has
been considered by Mamou et al. [14]. For the case of

a horizontal enclosure, the existence of subcritical con-
vection was demonstrated numerically and analytically.
Recently, the onset and development of convection in
a porous layer corresponding to the double-di�usive

con®guration where the destabilizing agent is the one
with a higher di�usivity, has been investigated by
Nguyen et al. [15]. It was demonstrated, on the basis

of both linear and nonlinear theories, that steady con-
vection can arise at Rayleigh numbers below the super-
critical value. This result, indicating the possible

development of subcritical steady ¯ows, was con®rmed
by numerical solutions of the full nonlinear governing
equations.
In this paper, we consider double-di�usive convec-

tion in a horizontal porous layer with boundary con-
ditions for each component being a combination of
¯ux and ®xed-value types. In the ®rst part of the paper

linear stability analysis is carried out to determine the
critical parameters of the problem and the boundaries
de®ning the regions of direct and overstable modes.

The second part of the paper presents numerical results
for the ¯ow ®eld, temperature and concentration distri-
butions, and heat and mass transfer rates for ®nite

amplitude convection.

2. Governing equations

The ¯ow con®guration under study is a two-dimen-
sional horizontal porous enclosure of height H ' and
width W ' as depicted in Fig. 1. The top and bottom

horizontal boundaries are subject to uniform ¯uxes of
heat q ', per unit area, which cool and heat, respect-

ively, at the same rate. Also, the lower horizontal wall
is maintained at concentration S 'L, whereas the upper
one is at S 'U < S 'L. The two vertical walls are regarded
as being insulated and impermeable. The ¯uid-satu-

rated porous medium is assumed homogeneous and
isotropic and inertial e�ects are neglected. Interaction
between the thermal and concentration gradients,

known as Soret and Dufour e�ects, are neglected. The
binary ¯uid that saturates the porous matrix is mod-
eled as a Boussinesq ¯uid whose density, r, varies line-
arly with temperature, T ', and concentration, S ',

r � rr�1ÿ bT�T 0 ÿ T 0r � ÿ bS�S 0 ÿ S 0r �� �1�

where rr is the ¯uid density at temperature T '=T 'r and
concentration S '=S 'r, and bT and bS are the thermal

and concentration expansion coe�cients, respectively.
The subscript `r' denotes a reference state.
The dimensionless equations describing conservation

of momentum, energy and constituent in the solution-
saturated porous medium are, respectively, given by

r2C � ÿRT
@

@x
�T�NS � �2�

@T

@ t
� u

@T

@x
� v

@T

@y
� r2T �3�

e
@S

@ t
� u

@S

@x
� v

@S

@y
� 1

Le
r2S �4�

where the stream C is de®ned by

u � @C
@y

; v � ÿ@C
@x

�5�

such that, the mass conservation is satis®ed.
The above equations were nondimensionalized by

introducing the following variables.

Fig. 1. Flow geometry con®guration.
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�x, y� � �x 0, y 0 �=H 0 �u, v� � �u 0, v 0 �H 0=a

C � C 0=a t � t 0a=sH 0 2

T � �T 0 ÿ T 0r �=DT 0 S � �S 0 ÿ S 0r �=DS 0

DT 0 � q 0H 0=k DS 0 � S 0L ÿ S 0U �6�

where T 0r is the temperature at the origin of the coordi-

nate system and S 0r � �S 0L � S 0U�=2. In the above
equations, u and v are the volume-averaged dimension-
less velocity components, t the dimensionless time, a, e
and s the thermal di�usivity of the porous medium,
the normalized porosity of the solid matrix, and the
porous medium to ¯uid heat capacity ratio, respect-

ively.
The dimensionless hydrodynamic, thermal and con-

centration boundary conditions are expressed by

x �2
A

2
C � 0

@T

@x
� @S

@x
� 0

y �2
1

2
C � 0

@T

@y
� ÿ1 S �2

1

2
�7�

The non-dimensionalization process results in the
appearance of ®ve dimensionless parameters, namely
the thermal Darcy±Rayleigh number, RT, the solutal
to thermal buoyancy ratio, N, the Lewis number, Le,

the normalized porosity, e, and the cavity aspect ratio,
A de®ned as

RT � gbTKDT
0H 0

an
; N � bSDS

0

bTDT 0
; Le � a

D
;

e � F
s
; A � W 0

H 0

�8�

where K is the permeability of the porous medium and
D the mass di�usivity.
It is noted that the volumetric expansion coe�cient,

bT, due to temperature change is usually positive, but

that for concentration change, bS, can be either posi-
tive (N>0) or negative (N<0). With the thermal and
solute boundary conditions considered in Fig. 1 it is

clear that the thermal gradient is a destabilizing factor
while the solute gradient is a destabilizing (stabilizing)
one when bS (i.e., N ) is positive (negative). Thus, for

N > 0, the two buoyancy components make aiding
contributions to the overall vertical density distribution
while for N<0, they make opposing contributions.

3. Linear stability analysis

In this section the physical situation described by

Eqs. (2)±(4), subject to boundary conditions (7), is
examined from the standpoint of stability to small per-
turbations from the rest state. This latter, for which

C=0 and heat and mass are transferred via pure di�u-
sion, is a possible solution for the steady state form of
the present system. The critical Rayleigh number,

above which this no-¯ow solution becomes unstable,
will be now determined on the basis of the linear stab-
ility analysis.
We introduce ®rst the following transformation

C�t, x, y� � CC � c0 e pt eioxf � y�

T�t, x, y� � TC � y0 e pt eioxg� y�

S�t, x, y� � SC � f0 e pt eioxh� y� �9�

where the static state of the system is characterized by

CC=0, TC=SC=ÿy and where, as usual, the stream
function, temperature and concentration perturbations
have been expanded in their normal modes, assuming
separability. In the above expressions c0, y0 and f0 are

small constant amplitudes and p is the growth rate of
the perturbation and o is de®ned as o=np/A where n
is an integer, for a con®ned enclosure of aspect ratio

A. For an in®nite layer, o=2p/AC in which AC is the
critical wavelength of the ¯ow con®guration.
In Eq. (9) the functions f, g and h describe the verti-

cal perturbation pro®les. Thus, they are required to
satisfy the following boundary conditions

y �2
1

2
; f � @g

@y
� h � 0 �10�

Substituting Eq. (9) into Eqs. (2)±(4), after neglecting
the small second-order terms, yields the following set

of equations

c0

 
@ 2f

@y2
ÿ o2f

!
� ÿioRT�y0g�Nf0h� �11�

py0g� ioc0 f � y0

 
@ 2g

@y2
ÿ o2g

!
�12�

epf0h� ioc0 f �
f0

Le

 
@ 2h

@y2
ÿ o2h

!
�13�

In general the analytical solution of Eqs. (11)±(13),
under boundary conditions Eq. (10), is possible but
tedious. For this reason the Galerkin ®nite element
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method is used to solve the above linear system of
equations.

Using the Green theorem, the variational formu-
lation of Eqs. (11)±(13) yields the following Galerkin
integrals

c0

�
O

�
df

dy

d �u

dy
� o2f �u

�
dO

� ioRT

�
O
�y0g�Nf0h� �u dO

�14�

py0

�
O
g �v dO� ioc0

�
O
f �v dO

� ÿy0
�
O

�
dg

dy

d �v

dy
� o2g �v

�
dO

�15�

epf0

�
O
h �w dO� ioc0

�
O
f �w dO

� ÿf0

Le

�
O

�
dh

dy

d �w

dy
� o2h �w

�
dO

�16�

where O=[ÿ1/2, 1/2] and u-, v- and w- are admissible
shape functions satisfying the boundary conditions in

Eq. (10).
In the following sections the conditions for station-

ary instability will be ®rst discussed. Then, the bound-

ary for oscillatory instability will be delineated. Since
the procedure has been described in detail in references
[16, 17], only the main steps and the ®nal results will
be presented here.

4. Instability via stationary convection ( p=0)

The Bubnov±Galerkin procedure, based on the
Lagrangian cubic element, is used to solve Eqs. (14)±

(16) for the special case p = 0 for which the exchange
of stability is valid. After assemblage of all the elemen-
tary matrices into the global matrices, the following
system of space-discretized equations is obtained

c0�Kc�f f g � RT�B ��y0fgg �Nf0fhg� �17�

c0�Ly�f f g � y0�Ky�fgg �18�

c0�Lf�f f g � f0

Le
�Kf�fhg �19�

where [Kc], [Ky], [Kf], [B ], [Ly] and [Lf] are m � m
matrices (m = 2Ney+1 being the total number of
nodes in the discretized domain, and Ney is the number

of elements in the y-direction) whose elementary
matrices are de®ned as

�Kc�e �
�
Dye

�
dNj

dy

dNi

dy
� o2NjNi

�
dy

�B �e � io
�
Dye

NjNi dy

�Kc�e � �Ky�e � �Kf�e �Ly�e � �Lc�e � ÿ�B �e

where Ni ( y ) are the Lagrangian shape functions.
Eqs. (17)±(19) can be rearranged to the following

canonical eigenvalue problem

c0��E � ÿ l�I ��f f g � 0 �20�

where I is the identity matrix, l=1/RT is the eigen-

value and [E ] is given by

�E � � �Kc�ÿ1�B ���Ky�ÿ1�Ly� �N Le�Kf�ÿ1�Lf��

The functions g and h can be computed from

fgg � �Ky�ÿ1�Ly�f f g

fhg � �Kf�ÿ1�Lf�f f g �21�

The supercritical Rayleigh number for the onset of

convection is thus given by

Rsup
TC �

1

lmax

�22�

where lmax=max(li, i = 1, . . . , m ) is the maximum
eigenvalue.
The precision of the value of R sup

TC, predicted by the

present ®nite element method depends naturally on the
grid number m = 2Ney+1 in the numerical domain.
For comparison, typical results are presented in Table

1 for the case of a square cavity heated from below by
a constant heat ¯ow (N Le=0). For this situation it is
observed that a Ney=15 mesh size yields an excellent

Table 1

E�ect of the grid size on the precision of the computed value of R sup
TC for a square enclosure (A=1) heated from below by a con-

stant heat ¯ux (N Le=0)

Ney 5 15 20 Kimura et al. [18]

R sup
TC 22.958296 22.946051 22.945940 22.945889

Error (%) 5.4� 10ÿ2 7.1� 10ÿ4 2.2� 10ÿ4
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Fig. 2. Constants a, b and c vs A for various values of N Le.
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Fig. 2 (continued )

A. Mahidjiba et al. / Int. J. Heat Mass Transfer 43 (2000) 1505±1522 1511



agreement between the numerical results and the ana-
lytical solution derived by Kimura et al. [18]. Numeri-

cal results concerning the case of an in®nite horizontal
layer were obtained using the fact that, for this situ-
ation, the ¯ow pattern is characterized by the for-

mation of a periodical structure with a given critical
wave number, AC, which depends upon the boundary
conditions and the parameter N Le. Thus, the critical

Rayleigh number and wave numbers were predicted
numerically in a rectangular channel of aspect ratio A
with periodic boundary conditions applied on the verti-

cal boundaries. In this way R sup
TC was obtained for var-

ious values of A, the minimum value R sup
TC being the

critical Rayleigh number and the corresponding aspect
ratio AC=A representing the critical wavelength for an

in®nite horizontal layer. Following this procedure it
was found, for instance, that for N Le 4 1,
R sup

TC=39.4784/N Le and AC=1.9996 in agreement

with the classical analytical results R sup
TC=4p 2/N Le

and AC=2 reported in Ref. [2].

5. Instability via oscillatory convection ( p$0)

We consider now the marginal state of instability via
oscillatory convection for which p is di�erent from
zero. Choosing the functions f, g and h as the weighted

functions, i.e., u-=f, v-=g and w-=h, it is readily found
from Eqs. (14)±(16) that

c0Kc � RT�y0By �Nf0Bf� �23�

py0My ÿ c0Ly � ÿy0Ky �24�

epf0Mf ÿ c0Lf � ÿf0

Le
Kf �25�

where

Kc �
�1=2
ÿ1=2

"�
df

dy

�2

�o2f 2

#
dy; My �

�1=2
ÿ1=2

g2 dy;

Mf �
�1=2
ÿ1=2

h2 dy

Ky �
�1=2
ÿ1=2

"�
dg

dy

�2

�o2g2

#
dy; By � io

�1=2
ÿ1=2

gf dy;

Ly � ÿio
�1=2
ÿ1=2

fg dy

Kf �
�1=2
ÿ1=2

"�
dh

dy

�2

�o2h2

#
dy; Bf � io

�1=2
ÿ1=2

hf dy;

Lf � ÿio
�1=2
ÿ1=2

fh dy

�26�

Substituting Eqs. (24) and (25) into (23) we get, after

some algebra, the following equation for p

e2 Le2 p2 ÿ gye Le p1pÿ cg2yp2 � 0 �27�

where

p1 � aÿ1 Le RT�e� cbN � ÿ �e Le� c�; p2 � e

Le�aÿ1RT�1� bN Le� ÿ 1�

a � KcKy

ByLy
; b � KyBfLf

KfByLy
; c � gf

gy
; gy �

Ky

My
;

gf �
Kf

Mf

�28�

From Eq. (27) it is found that p is given by p �
gy� p12

�����������������������
p21 � 4cp2�=

q
�2e Le�: The case p = 0 corre-

sponds to p2=0 for which, according to Eq. (28), the

supercritical Rayleigh number, R sup
TC, is given by

Rsup
TC �

a

1� bN Le
�29�

In general p is a complex number p=pre+ipim, where

pre and pim are its real and imaginary parts, respect-
ively. They are given by

pre � gy
2e Le

� p12
��������������������
p21 � 4cp2

q
�

pim � 0

9=; if p21 � 4cp2r0 �30�

pre � gyP1

2e Le

Pim � gy
2e Le

�������������������������
j p21 � 4cp2 j

q
9>>=>>; if p21 � 4cp2 < 0 �31�

The overstable critical Rayleigh number, R over
TC , corre-

sponds to the condition pre=0, i.e., p1=0. From Eq.

(28) it is found that

Rover
TC � a

�Le e� c�
Le�e� bcN � �32�

This Rayleigh number marks the transition from the
oscillatory to direct convective modes.
The oscillatory regime pim$ 0 exists only when the

condition p 2
1+4cp2 < 0 is satis®ed, i.e., R over

TC R RT R
R osc

TC. The value of R osc
TC is deduced from the condition

p 2
1+4cp2=0 as
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Fig. 3. (a) R sup
TC as a function of N Le for various values of A and streamline patterns for A=5; (b) N Le=0, R sup

TC=12.45; (c) N

Le= 50, R sup
TC=76.37 � 10ÿ2; (d) N Le=ÿ25, R sup

TC=200.29; (e) N Le=ÿ50, R sup
TC=1715.58 and (f ) e�ect of N Le on the critical

wavelength, AC.
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Rosc
TC � a

�Le eÿ c���eÿ bcN � � 2
��������������ÿebcNp �

Le�e� bcN �2 �33�

From Eqs. (29)±(33) it can be demonstrated that over-

stable regime exists only for the case of opposing ¯ow
(N<0) and more precisely when RT> ae Le/(e Leÿc )
and RS < ÿac/b(e Leÿc ) with the condition Ler c/e.
Since c>1 (Fig. 2f) and e<1, the Lewis number, Le,
must be greater than unity to have overstable regime.
The in¯uence of the aspect ratio A of the cavity on

the coe�cients a, b and c, Eq. (28), is illustrated in
Fig. 2 for various values of N Le. The results obtained
for N Ler 0, for which both temperature and solute
gradients are destabilizing, are depicted in Figs. 2a±c.

The case N Le = 0 corresponds to the Rayleigh±
BeÂ nard problem with ¯ux boundary conditions for
which the ¯ow pattern, at the onset of convection, con-

sists of a single cell occupying the entire cavity (see,
for instance, Fig. 3b). For this situation, Fig. 2 indi-
cates a strong dependence of coe�cients a, b and c

with the aspect ratio of the cavity. On the other hand,
the limit N Le 4 1 corresponds to the Rayleigh±
BeÂ nard problem with Dirichlet boundary conditions.
For this situation, the ¯ow within the cavity is possibly

multicellular and the resulting number of cells depends
essentially upon the aspect ratio of the cavity. In gen-
eral, at each value of A � �����������������

n�n� 1�p
the number of

cells increases from n to (n+1), resulting in a jump of
the values of a, b and c. For instance when A = 1 we
have only cell (n=1) in the cavity. Upon increasing A

from unity up to A � ���
2
p

a one mode cell prevails.
Above A � ���

2
p

, the ¯ow exhibits a two-cells mode and
this process continues as the value of A is made larger.

Naturally, both the strength and the frequency of these
jumps are reduced as the value of N Le is made
smaller. The results obtained for N Le < 0, for which
the temperature gradient is destabilizing and the solute

gradient stabilizing, are depicted in Figs. 2d±e. As will
be discussed later, the absence of jumps in the curves
is due to the fact that for this situation, the ¯ow

pattern remains unicellular independently of the values
of N Le and A.
The supercritical Rayleigh number, R sup

TC, is pre-

sented in Fig. 3a, as a function of the parameter N Le,
for various values of the aspect ratio, A. Typical
streamline patterns are illustrated in Figs. 3b±e for A
= 5 and various values of N Le. For N Le > 0, i.e.,

when both temperature and solute gradients are desta-
bilizing, the results are observed to be almost indepen-
dent of the aspect ratio. When N Le is su�ciently

large, the onset of convection is governed by the solute
e�ects and R sup

TC=4p 2, as predicted by Lapwood [2],
such that R sup

TC=4p 2/N Le. This limit, which is indi-

cated in Fig. 3a by a dotted line, is observed to be
reached approximately for N Le r 10. The resulting
¯ow pattern at the onset of convection is illustrated in

Fig. 3c for N Le= 50 where ®ve counter rotating cells

are present in the cavity. This situation corresponds to
the classical BeÂ nard problem. The case N Le < 0 will
now be discussed. For this situation the ¯ux com-

ponent (temperature) is destabilizing while the ®xed-
value component (solute) is stabilizing. In general, Le
is greater than unity such that the resulting situation is

analogous to the di�usive regime of conventional ther-
mohaline convection where the faster di�using com-

ponent is destabilizing and the slower di�using
component is stabilizing. The results depicted in Fig.
3a indicate that, for a given value of A, R sup

TC increases

monotonously as the value of N Le, that is the
strength of the solutal stabilizing gradient, is enhanced.

However, it is observed that, for a slender enclosure
(A=1), R sup

TC=12 independently of the value of N Le
when this later is below 0.79. This result indicates that,

in an in®nite horizontal layer, the onset of convection
is independent of the magnitude of the stabilizing
gradient. The resulting situation corresponds to the

Rayleigh±BeÂ nard problem with ¯ux boundary con-
ditions for which the primary instability occurs at zero

horizontal wave number. Similar results have been
reported in the past by Nield [19] and Tsitverblit [20]
while considering double-di�usive convection in a hori-

zontal ¯uid layer subject to mixed boundary con-
ditions. With the boundary conditions considered by
Tsitverblit [20] the ®xed-value component (heat) was

stabilizing such that his problem is analogous to the
®nger regime of thermohaline convection as opposed

to the analogy of the problem considered here with the
di�usive regime. The e�ects of negative values of N Le
on the ¯ow patterns at the onset of convection are il-

lustrated in Figs. 3d±e. For N Le=ÿ25, Fig. 3d indi-
cates the existence of two superposed co-rotating long
cells ®lling up the entire cavity. As the value of N Le is

decreased these two cells move progressively toward
the upper and lower boundaries and the core region

becomes motionless. Thus, for N Le=ÿ50, Fig. 3e
shows the presence of very thin cells at the vicinity of
the two horizontal boundaries. This ¯ow behavior is

due to the con®nement of the enclosure and it does
not appear for an in®nity layer. Fig. 3f illustrates the

e�ect of the parameter N Le on the wavelength AC of
the incipient ¯ow structure induced within an in®nite
layer (A41). According to the linear stability theory

for N Le= < 0.79, the ¯ow remains unicellular
(AC=1) independently of the strength of the stabiliz-
ing solutal gradient. For N Le > 0.79 the ¯ow struc-

ture is multicellular and AC decreases from in®nity
toward the classical value AC=2 predicted by Lap-

wood [2] for a porous layer saturated by a monocom-
ponent ¯uid (N Le41).
Typical stability diagrams, as predicted by the linear

stability theory, are illustrated in Fig. 4a±b for the
cases of a square enclosure (A = 1) and an in®nite
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layer (A=1), respectively. The results are presented in

the RT±RS plane for Le = 10 and e=1. For a square

enclosure (A = 1), three distinct regions delimited by

the curves corresponding to Eqs. (29), (32) and (33)

are observed to exist (see Fig. 4a). In Region I, RT <

R over
TC , the basic rest state solution is stable according

to the linear stability theory. This point was con®rmed

by the numerical simulation of the full governing

equations that will be discussed in the next section. In

region II, R over
TC <RT<R osc

TC, the linear stability analy-

sis shows that both real and imaginary parts of the

parameter, p, Eqs. (30) and (31), are positive. In this

region the numerical results indicate that upon starting

the numerical runs with the rest state as initial con-

ditions, the ¯ow, temperature and concentration ampli-

tudes grow with time in an oscillatory manner. In

region III (RT > R osc
TC), above the neutral stability line,

the system is unstable and all the numerical results

Fig. 4. Stability diagrams for Le=10 and e=1; (a) A=1 and (b) A=1.
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Fig. 5. Results obtained for the case of Dirichlet thermal and Neumann solutal boundary conditions: (a) R sup
TC as a function of N

Le for various values of A and streamline patterns for A=5; (b) N Le=50, R sup
TC=24.88� 10ÿ2; (c) N Le=0, R sup

TC=39.85; (d) N

Le=ÿ0.9, R sup
TC=1049.69 and (e) e�ect of N Le on the critical wavelength, AC.

A. Mahidjiba et al. / Int. J. Heat Mass Transfer 43 (2000) 1505±15221516



obtained in this region demonstrated the existence of

®nite amplitude convection, independently of the initial
conditions. However, for an in®nite layer (see Fig. 4b),
the principle of exchange of stability is valid and over-

stable regimes are not possible. For this case the rest
state solution becomes unstable only when RT > R sup

TC.
The transition between unicellular and multicellular

¯ows is given by the relation RS=0.79RT indicated as
a dotted line on the graph.

All the above results are concerned with the case
where the destabilizing gradient of temperature is
speci®ed by the heat ¯ux applied on the horizontal

boundaries and the stabilizing (N Le < 0) gradient of
solute by the di�erence in its values between these

boundaries. For completeness, the same problem was
considered for the case when temperature and concen-
tration on the boundaries are speci®ed in terms of the

®xed-value and ¯ux boundary conditions, respectively.
Fig. 5 shows the results obtained, following the nu-
merical technique described before (the only di�erence

being in the boundary conditions). As it can be seen
by comparing Figs. 3 and 5, the instability mechanism

is considerably a�ected by the speci®cations of the
boundary conditions of the stabilizing and destabiliz-
ing components.

In Fig. 5a, R sup
TC is plotted as a function of N Le for

A = 1 and 1. With the boundary conditions con-

sidered here when N Le is large enough, the onset of
convection is induced by the destabilizing solutal gradi-
ent maintained by the ¯ux conditions. The resulting

¯ow pattern for this situation is unicellular (see for
instance Fig. 5b for A=5) and R sup

SC=22.94 (12) when
A = 1 (1) such that R sup

TC=22.94/N Le (12/N Le ).

These two asymptotic limits are depicted by dotted
lines in Fig. 5a. It is found that the solutal gradients

are predominant for N Ler10, when A=1 and N Le
r 1 when A=1. As the value of N Le is reduced
down to N Le = 0 the resulting situation corresponds

to the BeÂ nard problem for which the linear stability
theory predicts that for R sup

TC=4p 2 instability appears

as convection in the form of rolls of square vertical
cross section. This point is illustrated in Fig. 5c which
shows the existence of ®ve counter-rotating rolls in a

cavity of aspect ratio A = 5. With the boundary con-
ditions considered here when N Le R 0, the ¯ux com-
ponent solute is stabilizing and the ®xed value

component (temperature) is destabilizing. For this situ-
ation Fig. 5a indicates that R sup

TC increases asymptoti-

cally towards in®nity as the value of N Le 4 ÿ1.
According to the linear stability theory, when N Le R
ÿ1, the system is unconditionally stable. Fig. 5d shows

the ¯ow pattern obtained for N Le=ÿ0.9 for which 11
counter-rotating cells are now present in the cavity.
The presence of secondary cells near the horizontal

boundaries is also observed. For an in®nite layer
(A=1) the e�ect of N Le on the critical wavelength is

depicted in Fig. 5e. It is observed that the ¯ow is uni-
cellular when N Le> 1.27. The critical wavelength AC

decreases from in®nity to 0.87 as the value of N Le is
decreased from 1.27 to ÿ1. For N Le<0; for instance
N Le=ÿ0.9, AC=0.93 and the ¯ow patterns consists

of two main counter-rotating cells squeezed by two
small vortices located near the upper and the lower
boundaries as illustrated in Fig. 5e.

6. Finite amplitude convection

In order to study the e�ect of a combination of the

¯ux and ®xed-value boundary conditions on the devel-
opment of ®nite amplitude double-di�usive convection,
the full governing Eqs. (2)±(4), with the associated

boundary conditions (7), were solved numerically by a
®nite di�erence method. The energy and concentration
equations were solved using the time-marching ®nite
di�erence technique. The ®rst and second derivatives

were approximated by central di�erences and time de-
rivative by a ®rst-order backward discretization. The
discretized forms of the energy and concentration

equations was written in conservative form for the
nonlinear convection terms in order to preserve the
conservation property. Eq. (2) was solved by the Suc-

cessive-Over-Relaxation method. The iterative pro-
cedure was carried out until a steady-state was
obtained. The convergence criteria for all ®eld vari-

ables are j fnew ÿ fold jext R10ÿ10, where f stands for
any ®eld variables and the subscript `ext' denotes extre-
mum value over the grid points. As a result of a grid
independence study, grid size of 80 � 80 is chosen for

the majority of the calculations. The time step was
selected so that no numerical oscillations occurred.
During the iterations, the ®eld always evolved

smoothly from arbitrary initial data to ®nal steady
states. The accuracy of the numerical model was veri-
®ed by comparing results from the present investi-

gation with those reported by Kimura et al. [18] for
the case of a shallow cavity heated from below by a
constant heat ¯ux (N = 0). Maximum di�erences
between the two investigations were within 0.5%.

The local heat and mass ¯uxes at the walls are given
in dimensionless terms by the Nusselt and Sherwood
numbers which can be evaluated, respectively, by

Nu � q 0

kDT 0=H 0
� 1

DT
; Sh � @S

@y

����
y�21=2

�34�

where DT=T(x, ÿ1/2)ÿT(x, +1/2) is the side-to-side
dimensionless temperature di�erence.
Integrating the results for local Nusselt and Sher-

wood numbers along the horizontal walls yields the
results for the overall Nusselt and Sherwood numbers
as
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Fig. 6. Bifurcation diagram for A = 1, N = 1 and Le = 0.1, 1 and 5, respectively: e�ect of the thermal Rayleigh number on (a)

Cmax, (b) Nu and (c) Sh.



Nu � 1

A

�A=2
ÿA=2

Nu dx; Sh � 1

A

�A=2
ÿA=2

Sh dx �35�

The e�ect of the thermal Rayleigh number on the
maximum value of the stream function Cmax and on
Nusselt and Sherwood numbers Nu and Sh are illus-

trated on Fig. 6 for A = 1, N = 1, Le = 0.1, 1 and 5
(R sup

TC=21.70, 14.56 and 5.89, respectively). For N>0,
i.e., for aiding double-di�usive ¯ow, both thermal and
solutal buoyancy forces are destabilizing and the graph

illustrates a standard supercritical bifurcation as it
exists for the classical BeÂ nard problem. Any pertur-

bation brought to the system at RT/R
sup
TC < 1 is

resorbed. Fig. 6 also shows that the Sherwood number

increases as the Lewis number is made larger. This fol-

lows from the fact that, as the Lewis number is

increased, the di�usivity of the solute becomes rela-

tively less important than that of heat, thus promoting

the intensity of the mass transfer. For the same reason,

it is observed that, excepted for the case Le = 0.1, the

Nusselt number decreases with the Lewis number. In

Fig. 7 the in¯uence of the Lewis number is also illus-

trated for A = 1 and RT/R
sup
TC=4 in terms of the

streamlines (top), isotherms (center) and iso-concen-

Fig. 7. Stream function, temperature and concentration ®elds for A = 1, N = 1, RT/R
sup
TC=4 and (a) Le = 0.1, Cmax=3.42,

Nu=2.64, Sh=1.02, (b) Le=1, Cmax=4.61, Nu=3.23, Sh=2.42 and (c) Le=5, Cmax=1.91, Nu=1.78, Sh=3.90.
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tration (bottom). The intervals of streamlines, iso-

therms and iso-concentrations are v fmaxÿfminv/16,
where f stands for C, T and S. All these results indi-

cate that, for a given Rayleigh number, upon increas-

ing Le from 0.1 to 5, both Cmax and Nu are observed

to ®rst increase with Le up to Le=O(1) and then to

decrease. The mass transfer, on the other hand is seen

to be a decreasing function of Le, as this parameter is

reduced toward zero.

The e�ect of RT on the ¯ow intensity Cmax is illus-

trated on Fig. 8a for the case A = 1, Le = 10, e=1

and N=ÿ0.1, i.e., for opposing double-di�using ¯ow.

Fig. 8. (a) Bifurcation diagram and (b) stream function, temperature and concentration ®elds for RT=R sup
TC=52.23 for the case A

=1, Le=10, e=1 and N=ÿ0.1, Cmax=1.85, Nu=1.63 and Sh=5.15.
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According to the linear stability theory it is found that

R sup
TC=52.23, R over

TC =31.58 and R osc
TC=42.96. The solid

lines in the graph represents the results of the present
numerical simulation. These results, for a given RT,

were obtained by starting the numerical simulation

with a ®nite amplitude ¯ow obtained at a higher Ray-

leigh number, as initial conditions. In this way it was
found that convection was possible down to a value of

RT=35, that is well below the supercritical Rayleigh

number R sup
TC=52.23. For R over

TC < RT < 35, the con-

vective ¯ow was found to oscillate. Thus, Fig. 8a illus-
trates a subcritical bifurcation for which there exists a

subcritical Rayleigh number at which a stable convec-

tive solution bifurcates from the rest state through
®nite-amplitude convection. In general, a non linear

stability is necessary to predict this critical Rayleigh

number (see, for instance, Ref. [21]) The ¯ow ®eld and

its corresponding temperature and solute ®elds,
obtained at RT=R sup

TC=52.23 is shown in Fig. 8b. The

isotherms and isoconcentration are observed to be

strongly distorted at the onset of supercritical convec-
tion, this behavior being typical of a subcritical bifur-

cation.

For a square enclosure ®nite amplitude results are

obtained for N Le=ÿ2. The results are depicted in

Fig. 9 in terms of ¯ow patterns obtained for various

values of the Rayleigh number. According to the linear
stability analysis, it is found that (1+bN Le ) > 0 since

b= 0.38 when N Le=ÿ2. Thus, for this situation, the

only possible bifurcation is the supercritical one. For
that reason, ®nite amplitude numerical solution indi-

cates no ¯ow motion for RT R R sup
TC=307.35. At the

onset of convection, as shown in Fig. 9a, the ¯ow pat-

tern exhibits two superposed co-rotating cells sur-
rounded by the main ¯ow circulation. At the vicinity

of the threshold (i.e., RT=310), a good agreement is

found between the ®nite amplitude results, Fig. 9b,

and the linear stability analysis prediction, Fig. 9a. As
the Rayleigh number is increased above R sup

TC, the main

¯ow disappears gradually and the co-rotating cells

move progressively towards the horizontal boundaries
as illustrated in Fig. 9c for RT=500. For RT=1000,
Fig. 9d shows that the ¯ow is now concentrated in the
bottom right and the top left corners of the cavity.

Also, it is observed that a weak counter-rotating cell is
generated in the central part of the enclosure.

7. Conclusion

The onset of double-di�usive convection in a rec-

tangular porous cavity, with mixed boundary con-
ditions for heat and solute applied on the horizontal
boundaries, has been studied numerically. The stability
to small perturbations from the rest state has been

investigated using a linear stability theory. A ®nite
di�erence method was used to simulate ®nite ampli-
tude convective ¯ows. The main ®ndings of the present

investigation are

1. Temperature and concentration speci®ed in terms of
Neumann and Dirichlet boundary conditions, re-

spectively:
1.1. For aiding ¯ows (N Le > 0) the results of the

linear stability theory indicate that the super-

critical Raleigh number R sup
TC depends strongly

upon the buoyancy ratio parameters N Le and
the aspect ratio of the enclosure A. For an in®-
nite layer (the critical wavelength A41) when

0 < N Le < 0.79 the ¯ow remains unicellular
(AC 41) and R sup

TC=12. For N Le > 0.79 the
¯ow is multicellular and for solute driven ¯ow

(N Le>>1)R sup
TC and AC tends toward the classi-

cal values 4p 2/N Le and 2, respectively. For
®nite amplitude convection it was found nu-

merically that the heat and mass transfer rates,
Nu and Sh, are di�erent from each other even
when Le=1.

Fig. 9. Flow patterns obtained for A = 1 and N Le=ÿ2; (a) RT=R sup
TC=307.35 (incipient ¯ow); (b) RT=310, Cmin=0,

Cmax=0.056, (c) RT=500, Cmin=0, Cmax=0.641 and (d) RT=1000, Cmin=ÿ0.091, Cmax=1.356.
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1.2. For opposing ¯ows (N Le < 0) and a given
aspect ratio A it is found that R sup

TC increases as

N Le 4 ÿ1. For this situation, the incipient
¯ow patterns consists of two co-rotating long
cells located in the vicinity of the horizontal

boundaries. The existence of subcritical convec-
tion and oscillatory modes has been demon-
strated. For an in®nite layer (A 4 1),

R sup
TC=12 and the ¯ow remains unicellular (AC

41) independently of N Le, i.e., the strength
of the stabilizing concentration gradient. For

this situation oscillatory convection is not poss-
ible.

2. Temperature and concentration speci®ed in terms of

Dirichlet and Neumann boundary conditions, re-
spectively: according to the linear stability analysis
the rest state is unconditionally stable for N Le R
ÿ1. For ÿ1 < N Le< 1.27 the ¯ow is multicellular
and the critical wavelength depends upon the par-
ameter N Le. For N Le > 1.27 the ¯ow is unicellu-

lar (AC41). For ÿ1<N Le<0 overstability and
subcritical convection are expected to occur.
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